
MS4PAN: Measurement System for Path-Aware
Networks

1st Leonardo Boldrini
University of Amsterdam

Amsterdam, The Netherlands
l.boldrini@uva.nl

2nd Antonio Battipaglia
Amazon

Dublin, Ireland
antobtt@amazon.com

3rd Cristian Hesselman
SIDN Labs and University of Twente

Arnhem, The Netherlands
cristian.hesselman@sidn.nl

4th Paola Grosso
University of Amsterdam

Amsterdam, The Netherlands
p.grosso@uva.nl

Abstract—Path-Aware Networks (PANs) allow applications to
choose the network paths their data traverses. However, they
require application developers to translate their performance
requirements (e.g., in terms of latency, throughput and data
loss) to a set of paths available through a PAN, which can
be a cumbersome process especially when dealing with multiple
PANs at the same time. In this paper, we propose MS4PAN, a
tool for app developers to select the best paths based on app-
specific requirements in Path-Aware Networks. We investigate
several network requirements for different use cases as well as the
difficulties for app developers to interact with different network
architectures. We provide a tool that automatically finds the best
paths that fulfill a set of requirements. We evaluate MS4PAN
in SCIONLab, an experimental testbed and implementation of
a SCION network. Our software helps developers by providing
a simple abstraction while dealing with different network archi-
tectures.

I. INTRODUCTION

Citizens and governments depend on digital technologies
that are severely entangled in the main structure of society
[1]. These technologies are built on the traditional Internet
architecture and therefore inherit some of its limitations, such
as the lack of user control of the network, and a conse-
quent erosion of trust [2]. The Responsible Internet paradigm
wants overcome these problems by improving the Internet
transparency, accountability and controllability [2]. The UPIN
(User-driven Path verification and control in Inter-domain Net-
works) project, based on the notion of Responsible Internet,
provides a framework for users to influence the flow of traffic
through the network [3] while integrating with the current
Internet architecture. This can be achieved by leveraging on
Path-Aware Networks (PANs).

PANs enable end users to choose the path that is then
embedded in the header of data packets. The possibility of
path selection enables end users to choose paths based on
their applications’ requirements, e.g., low latency for remote
surgeries and high throughput for file transfers.

While these architectures provide a way for users to choose
a path for their traffic, it is difficult for app developers to
utilize these tools. Every architecture provides a different API

to interact with them and this forces developers to know syntax
and details of all these APIs. This poses a limitation for
the adoption of these architectures. Furthermore, even when
working with one specific PAN, satisfying the requirements
of one application translates into dealing with many different
paths, and path properties change over time. This makes the
job of developers working with PANs challenging.

To overcome these limitations, we propose MS4PAN (Mea-
surement System for Path-Aware Networks), the first tool for
developers that supports different PAN architectures. MS4PAN
deals with the complexity of different network architectures
while providing app developers a single, easy to use interface
to set the requirements of their apps. MS4PAN constantly
probes the underlying network architectures it works on top of
in order to store updated information on the performance of
every path to a specific destination. This information is stored
in a database and it is quickly queried for monitoring of per-
formance. In case a path experiences a change in performance,
due to the dynamic nature of the network, an application is
assigned a different path automatically, so that applications
can respect stringent requirements on their traffic at all times.
Finally, MS4PAN provides a user friendly interface to interact
with to ease the work of developers and avoiding complex
tuning for every PAN.

To this end, we make the following contributions:

• We investigate network requirements from different ap-
plications as well as difficulties for developers to manage
paths when interacting with PANs.

• We present the design, implementation and evaluation of
MS4PAN, a tool for developers to easily set requirements
for the traffic of their apps and that works on top of
different PANs.

The remainder of this work is structured as follows: in
Section II we analyze the network requirements from different
applications and the challenges faces by developers when
dealing with many paths in PANs. After discussing related
work in Section III, we present the design of MS4PAN in



Section IV. Afterwards, we present our implementation of this
tool in Section V, followed by its evaluation in Section VI and
conclusions in Section VII.

II. REQUIREMENTS

We analyzed requirements of different use cases, including
Wireless sensor and actor networks [4], 5G mobile services
and their KPIs [5], [6], Vehicle-to-Everything (V2X) com-
munication systems [7], Survivable network systems [8], [9],
critical infrastructures that underpin modern society [10], e-
health services [11].

Most requirements that these use cases have from the
underlying network they rely on are performance related. They
are expressed in terms of maximum latency, that is the
time it takes for a packet of data to travel from the source
to the destination, measured in milliseconds (ms), minimum
throughput, that refers to the amount of data transmitted in
a given period, measured in bits per second (bps), maximum
packet loss rate, the percentage of packets that are lost
during transmission.

Another common finding in our research as a requirement
for these use cases is reliability. It refers to the ability of a
network to consistently perform its intended functions under
normal conditions without failure. It is a key measure of a
network’s robustness, indicating how dependable and resilient
it is over time.

A network paradigm that opens the door to end users to
define their own path is Path-Aware Networking. Path-Aware
Networks (PANs) enable end users to choose the path that is
then embedded in the header of data packets. The possibility
of path selection enables PANs’ users to choose paths based
on their applications’ requirements. This comes with its own
challenges: in the past two decades, several PAN architectures
have been introduced [12], including Platypus [13], [14],
PoMo [15], NIRA [16], Pathlets [17], NEBULA [18], and
SCION [19].

When interacting with each of these PANs, app developers
need to interact with low level network applications that are
specific to that PAN. This includes knowledge on the syntax
of specific commands and details on many different APIs that
PANs define to use them. Moreover, also in the simple case of
an application relying on one single PAN, app developers find
themselves working with many paths that this PAN provides.
This happens because in order to satisfy network requirements
that applications have, multiple paths need to be constantly
evaluated at all times for ensuring reliable performance. This
poses more challenges for app developers and it becomes a
reason for the slow adoption of PANs.

We want to provide a tool that allows app developers to ful-
fill the requirements set by applications belonging to different
use cases. In this paper, we will consider the requirements
on network performance highlighted in one specific e-health
service [11]. This choice is only made as an example and
has no consequence on any consideration that will follow. We
report here what we will commit to satisfy in the rest of this
paper: a maximum latency of 200 ms, a minimum throughput

of 6 Mbps and a maximum packet loss rate of 2%. We also
fulfill the reliability requirement by making sure that these
performances are met in real time.

III. RELATED WORK

Before the advent of PANs, some network technologies such
as RSVP-TE (Resource Reservation Protocol - Traffic Engi-
neering) already provided similar functionalities to PANs, in
particular bandwidth and latency guarantees [20], [21]. Despite
their success, they are generally not usable by application
developers because they were intended to be controlled by
operators.

More recently, a Path Aware Networking Research Group
(PANRG1) has been proposed within the Internet Research
Task Force (IRTF) to discuss various aspects of PANs with the
Internet standards community [22]. While PANRG discusses
the development of PANs, which provide a way for users
to control paths, users also need easy-to-use methods to be
informed on what paths are most suitable for their applications.

In contrast, tools such as performance Service-Oriented
Network monitoring ARchitecture (perfSONAR) are deployed
and already in use to establish end-to-end usage expectations
[23]. There are thousands of perfSONAR instances deployed
worldwide, many of which are available for open testing of
key measures of network performance. However, these tools
are designed for monitoring on the Internet and not tailored
to the functionality of PANs.

Other systems such as the Software-Defined Network for
End-to-end Networked Science at Exascale (SENSE) [24] are
designed for science applications to express their requirements,
also in terms of performance. These systems are however
limited to the applications they can serve, as they operate only
within their domain and are not designed to be implemented
with different PANs.

FABRIC [25] is an international infrastructure that enables
experimentation and research at-scale in the areas of net-
working, cybersecurity, distributed computing, storage, virtual
reality, 5G, machine learning, and science applications. It
allows to set up worldwide networks where many performance
measurements can be carried out. While FABRIC is a great
tool for researchers in many fields, it is also a closed infras-
tructure not useful for applications that want to interact with
PANs in the Internet.

MS4PAN bridges the gap between the PAN and its user.
To the best of our knowledge, the tool that we provide to
aid app developers in interacting with PANs and guarantee
performance to satisfy their app requirements is the first of its
kind.

IV. ARCHITECTURE

We now present the architecture of MS4PAN, all of its
components and how they interact with each other as well as
where they stand between a PAN and an application that uses
it. Fig. 1 shows the architecture of our system and the order

1PANRG: https://datatracker.ietf.org/rg/panrg/about



Fig. 1: MS4PAN software architecture. All the components of
the software lie between the application and the PANs. The
red line separates the path control from the data transfer. The
numbers represent the order of operation.

of operation of each of its components. The red line divides
the picture in 2 parts, on the left the path control where our
software lies, on the right the data transfer.

The bottom part of the picture represents Path-Aware Net-
works. These include the PANs already mentioned Section II
and more. The top part of the picture represents an application
that intends to use these networks for its traffic. When this
application is designed to work with our tool, it interacts with
it first and then sends traffic.

MS4PAN and all of its components sit between the network
and the application layers. Our tool interacts with different
PANs, and because every PAN provides a different API to
work with it, MS4PAN has a Network Abstraction Module
(NAM) for each PAN. These components are network specific,
they interact directly with the network layer. PANs offer us to
choose among a set of different paths available to reach each
destination. Every time we want to measure the performance
or other aspects of each path, it is ultimately up to the NAM
to execute the command for its specific PAN to test that path.

The rest of our tool is network agnostic, as it builds on
top of the NAMs to offer an API for the application to select
only paths that satisfy its requirements. Probes are used to test
paths over time in order to have always updated information
on the state and the properties of each path. We use probes to
test path characteristics such as latency, throughput and packet
loss as experienced by the application. Probes are also used to
gather information on paths that do not regard performance,
but is still useful to satisfy requirements of some applications.
For example, wherever possible we gather information on the

geographic location of the ASes traversed by a path. More
probes can be implemented in case applications have new
requirements.

We store the information gathered by the probes into a
database. Since the probes need to retrieve and store data
efficiently, this database plays a crucial role in our software in
storing information on all available paths to reach the possible
destinations.

The Path Selection component queries the database ac-
cording to the requirements set by the application. It also
implements a multi objective optimization algorithm to select
the best paths out of the pool available that satisfy the set of
requirements.

The last component of our software is an API that raises
the abstraction level for app developers when interacting with
our system. Applications in fact only need to deal with this
component to make use of the full potential of our tool.

The order of operation is as follows, and the numbers
correspond to the ones in Fig. 1:

1) The first interaction happens between MS4PAN and
the network that lies beneath it. The probes measure
the performance of multiple paths to reach a set of
destinations at the same time. The database is then
populated and ready to be queried for path analysis.

2) The application interacts with the API of MS4PAN to
state the requirements on the data it needs to transmit.

3) The tool returns the best paths selected according to
those requirements and the command to interact with
the PAN to use them.

4) The application can then send its traffic through the
network choosing the best (set of) path(s). In case the
requirements are no longer fulfilled, the whole process
restarts.

V. IMPLEMENTATION

We now discuss our implementation of MS4PAN using
SCION as an example of a Path-Aware Network. Our soft-
ware is available and can be found in the following GitHub
repository [26]. We chose SCION because of its recent and
widespread adoption and because it offers functionalities use-
ful for our NAM implementation. SCION [19] is an Internet
architecture designed to provide endpoints strong control for
both inbound and outbound traffic. It is developed to ensure
high availability in the presence of adversaries, trust and
path transparency, and inter-domain multipath routing [27].
Specifically, we used SCIONLab, a worldwide testbed that
allows us to run experiments with the SCION architecture.

A. SCIONLab

SCIONLab is a large-scale testbed designed to provide a
fully distributed SCION network infrastructure, made up by
different Autonomous Systems organized in isolated domains.

Fig. 2 depicts the global SCIONLab topology currently
available [28]. Every node in this topology represents an AS.
It is based on 35 ASes widely distributed across the world.
SCIONLab organizes ASes into groups of independent routing



Fig. 2: SCIONLab Topology [28]: Core ASes are colored light orange; Non-Core ASes are white; Attachment Points are green;
our AS is blue.

planes, called isolation domains (ISDs), which interconnect to
provide global connectivity.

A Core AS, light orange colored in Fig. 2, is the root
of trust inside the AS, which signs public key certificates
of other ASes in the same ISD. Non-core ASes, instead,
are white colored. Attachment points (AP) allow users to
attach their own ASes to extend the global topology with the
experimenters’ computational resources; they are light green
colored in Fig. 2.

Finally, there is our own AS, colored light blue, that we set
up to interact with the SCIONLab network.

B. SCION NAM

In order to interact with SCIONLab, our NAM uses SCION
specific applications, such as scion address, scion
showpaths, scion ping, scion traceroute,
scion-bwtestclient. These applications are powerful
tools but also require knowledge on their specific syntax: for
instance, the scion-bwtestclient takes the following arguments:

scion-bwtestclient -s server_address
-cs 3,MTU,?,8Mbps -sequence ’AS_list’

Other than the destination (server address) and the ordered
list of ASes for a path (AS list), we need to specify the time
interval for which the throughput needs to be achieved (3s), the
packet size to send over the path (MTU), a wildcard (?) for the
number of packets automatically computed by the application,
and the desired throughput to achieve (in this case 8Mbps).
We defined these parameters for the client-server measurement
only (cs) and, by default, they are used for the server-client
too, resulting in 2 average throughputs to be saved. More
information on these applications can be found in [29].

We probe the network by sending traffic with these appli-
cations and storing in the database the relevant information

Fig. 3: Database Schema presenting, from left-to-right, collec-
tion of paths’ statistics, collection of each path for each server,
and servers considered for testing.

on all paths to reach the destinations considered for testing.
We call these destinations available servers. We used
MongoDB as the database for its usability and performance
as well as the flexibility that comes with a non-relational
database. We show its structure in Fig. 3. Notably, for every
path, we store the experienced throughput in upload and
download as well as with different sizes of packets. This is
in line with the requirements that applications have, as the
direction and the size of packets they generate might differ.

C. Path Selection

The Path Selection consists at first of a query of the
database that targets paths that satisfy requirements set by
the application. When more than one path is available, we
compare paths with each other to determine if there is a
subset of paths that are always better than others. For instance,
we can compare two paths that experience the same latency
and the same packet loss rate, but the first provides a higher
throughput, then we know that the first is better than the



Fig. 4: MS4PAN API implementation as a web interface. On
the left, the available filters for the application to choose. On
the right, the results of a previous search are a set of paths
that satisfy set requirements.

second. By extending this comparison to all possible couples
of paths, we can determine which are the best paths out of the
pool available. This is the basic principle behind our multi
objective optimization process for choosing the best path.
This process relies on the Pareto front [30] and it happens
every time it is possible to compare the performance of two
paths. This is done in order to provide the application with
the best path available in a specific PAN. The Pareto front
is invaluable in decision-making processes where trade-offs
between competing objectives must be considered. We applied
this concept to network optimization, to balance latency,
throughput and packet loss rate.

D. MS4PAN API

Finally, the MS4PAN API is designed as a web interface
and we show the filters available for the application to choose
from in Fig. 4. The figure also shows the result of a previous
search as a set of paths for the application to choose from.

VI. EVALUATION

We discuss our evaluation of MS4PAN in terms of the com-
plexity of managing multiple paths on a Path-Aware Network.
This highlights the work that an app developer would have
to carry out for every specific scenario, including different
applications and different PANs, while everything happens
automatically when MS4PAN is utilized.

We started our test by analyzing multiple paths available in
SCIONLab to reach the destinations that a specific e-health
application could target. We gathered a dataset comprising
approximately three thousand samples. This provides a foun-
dation for our following analysis, offering insights into path
performance regarding latency, bandwidth and packet loss rate.
For the rest of this paper, we will select 16-ffaa:0:1003,
[172.31.19.144]:30100 as the destination that the e-
health application needs to reach. This is done as an example
and has no influence on any consideration that will follow.
This destination is located in North Virginia, while our AS,
that is where the application will start to send its traffic, is
located in Switzerland.

Fig. 5: Number of paths for destination 16-ffaa:0:1003,
[172.31.19.144]:30100, located in North Virginia, for decreas-
ing values of latency.

The first requirements of our e-health application is the
maximum latency of 200ms. Different use cases can have
also stringent requirements on the standard deviation of ex-
perienced latency [11]. Because our database stores data on
latency for every path and every iteration independently, we
can query our database to gather information on the maximum
latency ever recorded, or the mean, for example. Fig. 5 uses
the mean latency, so it reports the number of paths which
mean latency is lower than various thresholds. We only want
to select the 34 paths that provide a mean latency lower than
200ms.

The second requirement we focus on is the minimum
throughput in download of 6 Mbps. Because the application
to test the throughput allows us to target a specific value,
we chose a value that is close to the requirement of our use
case. It is important to note that this application is specific to
SCIONLab, other PANs require monitoring of data in transit to
measure the experienced throughput that needs to be satisfied.
Furthermore, our e-health application generates bigger packet
size in download than upload, so we measured the download
throughput with MTU sized packets. We can generate a
similar graph to what we showed for the latency also for
the throughput, and similar considerations for the maximum
packet loss rate of 2%. While showing the number of paths
that satisfy a requirement can give us some information on the
performance and therefore the possibility of running a specific
service on a network, it still doesn’t show which path exactly
satisfies a requirement, let alone more than one requirement at
the same time. Therefore, we plot in Fig. 6 each path as a dot in
a three dimensional space, with one performance requirement
per axis: throughput, latency and loss.

We chose this representation, just like the unusual axis
orientation, so that the bottom part of the graph corresponds
to the best performing paths. In this space, every path is
represented by a dot. If the dot is outside of the highlighted
region, it does not satisfy all the requirements on performance.
We indicated these dots in red. If it falls inside of the
highlighted region, it is green and it is a suitable path for
the use case considered. We can include more metrics in our



Fig. 6: Plot of each path for destination 16-ffaa:0:1003,
[172.31.19.144]:30100, located in North Virginia, in the 3D
space of throughput, latency and packet loss. A path is
represented by a dot. A highlighted green region corresponds
to satisfied requirements from the e-health use case. Thicker
dots represents dots that lie in the Pareto front.

evaluation, that is, add more requirements to be satisfied by
the application. We decided not to plot them for the sake of
clarity.

Every path in this plot is tested “iterations” number of times.
We set the number of iterations equal to 100 for our evaluation,
but this is a value that changes when monitoring the data
in transit. Generally, every measurement iteration provides a
different value for each metric. This translates into a dispersion
in space of each path, so each path should be represented by a
portion of space instead of a dot. However, we noticed the plot
to become less clear when showing this pattern, so we instead
chose specific values for latency and throughput. Fig. 6 shows
the mean value for the latency, and the minimum bandwidth
for the downlink with MTU size packets. This choice is only
for the sake of clarity in our plot, in fact every application
requires a different study when it comes to which values to
consider. While some of these requirements, like the direction
of traffic flow, is present in most of the literature we came
across, the packet size is less investigated in literature. But
in our findings, in the SCIONLab testbed, packet size has
implications on the overall performance, having consequences
on throughput and latency. These consequences can affect the
choice of one path over another.

While all green dots in our graph correspond to paths that
satisfy all the requirements set by the application, we can
determine the subset of these paths that lie on the Pareto
front and that provide therefore better performance than all
the others. These are represented as thicker green dots in Fig.
6.

The MS4PAN API returns to the application the list of paths
that satisfy the requirements, starting with the paths lying on
the Pareto front, as well as the command that the application
needs to use to select that path when interact directly with the
PAN.

VII. CONCLUSIONS AND FUTURE WORK

We proposed MS4PAN (Measurement System for Path-
Aware Networks), a tool for application developers that in-
tegrates the necessary testing of paths that also deals with the
complexity of different PANs. Our software is composed of
network specific components such as the NAMs, that interact
with a specific PAN, and of network agnostic components, to
run testing and interact with an application. MS4PAN stores
measurements of several properties of the underlying network
and its available paths for each destination. Our tool finds the
list of best paths when provided with a destination for the
application to use and its requirements on performance such
as latency, throughput and packet loss rate.

We evaluated MS4PAN on the SCIONLab testbed for an
e-health application. The process of measuring and selecting
the best paths is transparent to the application.

Our implementation with the SCION PAN showed promis-
ing results in aiding developers and we intend to carry out
experiments with different PANs as well as with different
applications in the future to make the use of MS4PAN more
widespread.

ACKNOWLEDGMENT

This research received funding from the Dutch Research
Council (NWO) under the project UPIN.

REFERENCES

[1] T. Dufva and M. Dufva, “Grasping the future of the digital
society,” Futures, vol. 107, pp. 17–28, 2019.

[2] C. Hesselman, P. Grosso, R. Holz, et al., “A responsible inter-
net to increase trust in the digital world,” Journal of Network
and Systems Management, vol. 28, no. 4, pp. 882–922, 2020.

[3] R. Bazo, L. Boldrini, C. Hesselman, and P. Grosso, “In-
creasing the transparency, accountability and controllability of
multi-domain networks with the upin framework,” in Proceed-
ings of the ACM SIGCOMM 2021 Workshop on Technologies,
Applications, and Uses of a Responsible Internet, 2021, pp. 8–
13.

[4] J. Chen, M. Dı́az, L. Llopis, B. Rubio, and J. M. Troya, “A
survey on quality of service support in wireless sensor and
actor networks: Requirements and challenges in the context
of critical infrastructure protection,” Journal of Network and
Computer Applications, vol. 34, no. 4, pp. 1225–1239, 2011,
Advanced Topics in Cloud Computing. DOI: https://doi.org/
10.1016/j.jnca.2011.01.008.

[5] H. Yu, H. Lee, and H. Jeon, “What is 5g? emerging 5g mobile
services and network requirements,” Sustainability, vol. 9,
no. 10, 2017, ISSN: 2071-1050. DOI: 10.3390/su9101848.

[6] T. Norp, “5g requirements and key performance indicators,”
Journal of ICT Standardization, vol. 6, no. 1-2, pp. 15–30,
2018. DOI: 10.13052/jicts2245-800X.612.

[7] Z. Amjad, A. Sikora, B. Hilt, and J.-P. Lauffenburger, “Low
latency v2x applications and network requirements: Perfor-
mance evaluation,” in 2018 IEEE Intelligent Vehicles Sym-
posium (IV), 2018, pp. 220–225. DOI: 10 .1109 / IVS.2018 .
8500531.

[8] R. C. Linger, N. R. Mead, and H. F. Lipson, “Requirements
definition for survivable network systems,” in Proceedings of
IEEE International Symposium on Requirements Engineering:
RE’98, IEEE, 1998, pp. 14–23.



[9] Y. Zuo, “A framework of survivability requirement specifi-
cation for critical information systems,” in 2010 43rd Hawaii
International Conference on System Sciences, 2010, pp. 1–10.
DOI: 10.1109/HICSS.2010.13.

[10] C. Alcaraz and S. Zeadally, “Critical infrastructure protection:
Requirements and challenges for the 21st century,” Inter-
national journal of critical infrastructure protection, vol. 8,
pp. 53–66, 2015.

[11] L. Skorin-Kapov and M. Matijasevic, “Analysis of qos re-
quirements for e-health services and mapping to evolved
packet system qos classes,” International journal of
telemedicine and applications, vol. 2010, no. 1, p. 628 086,
2010.

[12] S. Scherrer, M. Legner, A. Perrig, and S. Schmid, “Enabling
novel interconnection agreements with path-aware networking
architectures,” in 2021 51st Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN),
2021, pp. 116–128. DOI: 10.1109/DSN48987.2021.00027.

[13] B. Raghavan and A. C. Snoeren, “A system for authenti-
cated policy-compliant routing,” in Proceedings of the 2004
conference on Applications, technologies, architectures, and
protocols for computer communications, 2004, pp. 167–178.

[14] B. Raghavan, P. Verkaik, and A. C. Snoeren, “Secure and
policy-compliant source routing,” IEEE/ACM Transactions On
Networking, vol. 17, no. 3, pp. 764–777, 2008.

[15] B. Bhattacharjee, K. Calvert, J. Griffioen, N. Spring, and J. P.
Sterbenz, “Postmodern internetwork architecture,” NSF Nets
FIND Initiative, pp. 1–18, 2006.

[16] X. Yang, D. Clark, and A. W. Berger, “Nira: A new inter-
domain routing architecture,” IEEE/ACM transactions on net-
working, vol. 15, no. 4, pp. 775–788, 2007.

[17] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica, “Pathlet
routing,” ACM SIGCOMM Computer Communication Review,
vol. 39, no. 4, pp. 111–122, 2009.

[18] T. Anderson, K. Birman, R. Broberg, et al., The nebula future
internet architecture. Springer, 2013.

[19] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and
D. G. Andersen, “Scion: Scalability, control, and isolation
on next-generation networks,” in 2011 IEEE Symposium on
Security and Privacy, 2011, pp. 212–227. DOI: 10.1109/SP.
2011.45.

[20] F. J. Rodrı́guez-Pérez, J. L. González-Sánchez, and A. Gazo-
Cervero, “Rsvp-te extensions to provide guarantee of ser-
vice to mpls,” in NETWORKING 2007. Ad Hoc and Sen-
sor Networks, Wireless Networks, Next Generation Internet:
6th International IFIP-TC6 Networking Conference, Atlanta,
GA, USA, May 14-18, 2007. Proceedings 6, Springer, 2007,
pp. 808–819.

[21] F. Baker, B. Lindell, and M. Talwar, Rfc2747: Rsvp crypto-
graphic authentication, 2000.

[22] B. Trammell, J.-P. Smith, and A. Perrig, “Adding path aware-
ness to the internet architecture,” IEEE Internet Computing,
vol. 22, no. 2, pp. 96–102, 2018.

[23] A. Hanemann, J. W. Boote, E. L. Boyd, et al., “Perfsonar: A
service oriented architecture for multi-domain network mon-
itoring,” in Service-Oriented Computing-ICSOC 2005: Third
International Conference, Amsterdam, The Netherlands, De-
cember 12-15, 2005. Proceedings 3, Springer, 2005, pp. 241–
254.

[24] I. Monga, C. Guok, J. MacAuley, et al., “Software-defined
network for end-to-end networked science at the exascale,”
Future Generation Computer Systems, vol. 110, pp. 181–201,
2020, ISSN: 0167-739X. DOI: https://doi.org/10.1016/j.future.
2020.04.018. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0167739X19305618.

[25] I. Baldin, A. Nikolich, J. Griffioen, et al., “Fabric: A national-
scale programmable experimental network infrastructure,”

IEEE Internet Computing, vol. 23, no. 6, pp. 38–47, 2019.
DOI: 10.1109/MIC.2019.2958545.

[26] L. Boldrini, Scion test suite, 2024. [Online]. Available: https:
//github.com/leonardoboldrini/SCION-Test-Suite.

[27] A. Perrig, P. Szalachowski, R. M. Reischuk, and L. Chuat,
SCION: a secure Internet architecture. Springer, 2017.

[28] SCIONLab, Scionlab topology, 2024. [Online]. Available:
https://www.scionlab.org/topology.png.

[29] A. Battipaglia, L. Boldrini, R. Koning, and P. Grosso, “Evalu-
ation of scion for user-driven path control: A usability study,”
in Proceedings of the SC’23 Workshops of The International
Conference on High Performance Computing, Network, Stor-
age, and Analysis, 2023, pp. 785–794.

[30] P. Ngatchou, A. Zarei, and A. El-Sharkawi, “Pareto multi
objective optimization,” in Proceedings of the 13th Interna-
tional Conference on, Intelligent Systems Application to Power
Systems, 2005, pp. 84–91. DOI: 10.1109/ISAP.2005.1599245.


