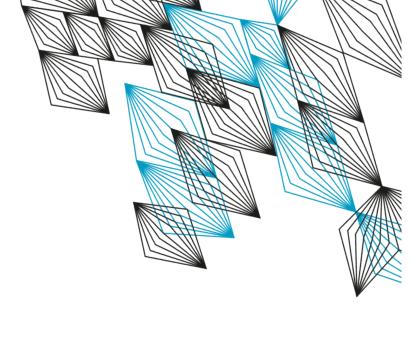
USER-DRIVEN PATH VERIFICATION AND CONTROL FOR INTER-DOMAIN NETWORKS

UNIVERSITY OF TWENTE.



UPIN KICKOFF

CRISTIAN HESSELMAN (SIDN LABS AND UNIVERSITY OF TWENTE) JANUARY 15, 2020

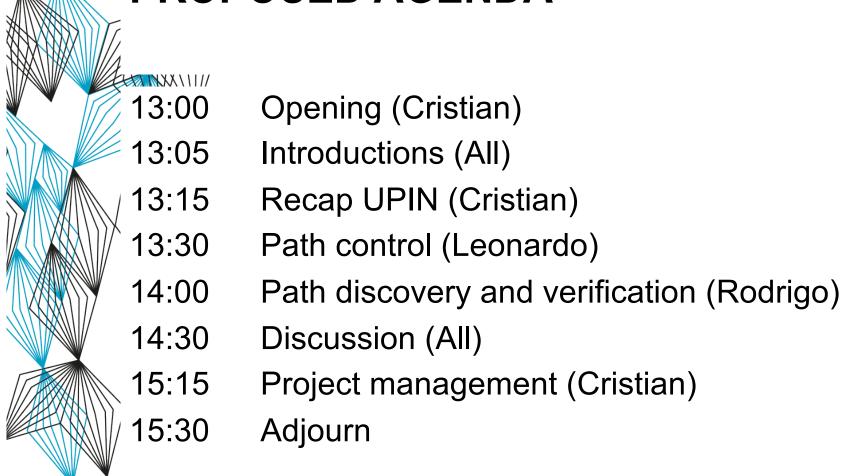
This research received funding from the Dutch Research Council (NWO) as part of the UPIN project

TODAY'S GOAL

3400 NXX\\\\\\\

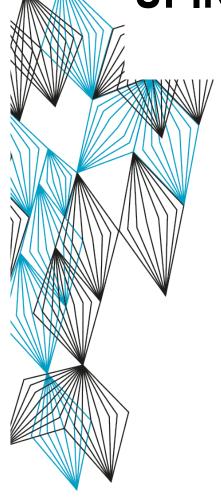
Recap of UPIN

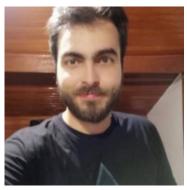
Get to know the UPIN researchers

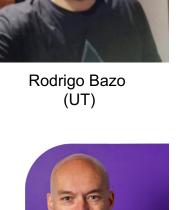

Update on status and future work

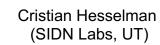
Get your feedback

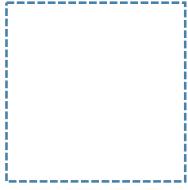
 Result: UPIN top of mind again, further improve researchers' work based on your feedback




PROPOSED AGENDA






UPIN CORE TEAM

Leonardo Boldrini (UvA)

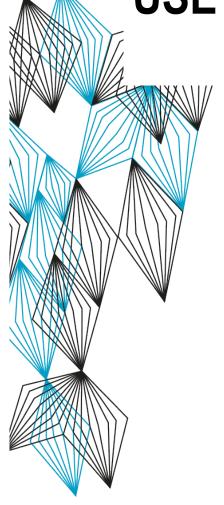
Paolo Grosso (UvA)

PROBLEM: DATA AUTONOMY "IN TRANSIT"

· Lack of transparency and control of how users' data flows travel across the Internet

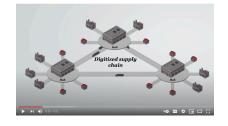
//// XXX

What network operators handle my data? How secure are their routers? I only want to use security-audited networks!


 Security risks for critical services like remote controlled healthcare robots, energy grids, intelligent transport systems

Reduced trust in the Internet infrastructure

USE CASES



UPIN focus: health, IoT, Intelligent Transport Systems

RESEARCH QUESTIONS

WXX \ \ | | /

 How do we make the Internet more transparent and provide Internet users with more control over and verifiability of network paths in a scalable way?

 To what degree can the current Internet architecture accommodate these functions and which other emerging internetwork architectures might potentially be more suitable?

UPIN GOAL

Develop and evaluate a scalable system that enables users (e.g., individuals and organizations) to verify and control how their data travels through the Internet or other types of inter-networks

Increase data autonomy in transit

- Enable users to specify path attributes that UPIN enforces
 - Homogeneous legal jurisdictions (cf. "Schengen routing")
 - Trusted network operators

WXX \ \ \ | //

- Geolocations of routers and application servers
- Trusted router vendors (e.g., those assumed not to have backdoors)
- Provide users with "proof-of-path"
 - Cryptographically verifiable descriptions paths that data took
 - Hops, routers, network operators

INNOVATIONS

2431NXXX\\\\\/

 Novel mechanisms for path discovery, control, and verification based on source's trust requirement and attestation of routers

 New data and control plane protocols that implement these mechanisms using programmable routers and SDN

 Evaluation of the performance and expected scalability of the UPIN system using the 2STiC testbed

UPIN CONCEPT (UPDATED) "A priori" UNIVERSITY OF AMSTERDAM Control Plane Matching path segments and VNFs ■ Transfer Plane Path Path Discovery Composition Operator Description (OD) Open programmable router Trust Operator Chains of path descriptions segments and VNFs requirements Transfer Plane Visualizer Power line switch at field Anomaly detector station Preference Mngr Power grid OD1 provider's SOC OD3 OD2 Data plane telemetry + operator descriptions Proof-of-trust Path The logos represent the focus of the Verification UPIN partners, which doesn't mean they won't help each other out! "A posteriori"

KEY RESULTS

WXX \ \ \ / /

System design and open-source implementation

Evaluations of through use cases on 2STiC testbed

Demonstrators of the UPIN concept

Academic and other publications, annual workshop

TARGETED IMPACT

2401XXX\\\\\/

Increased user control over data in transit

Enable new types of network and service operators

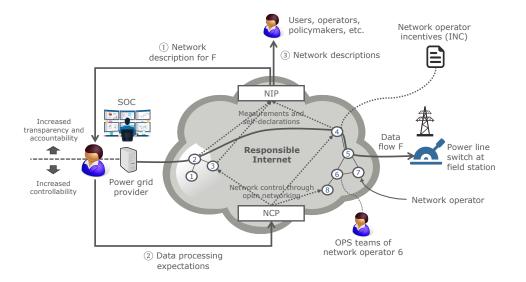
• Advance emerging **standards** (e.g., path-aware networking)

Increased pool of knowledge of academic and operator communities

UPIN AND 2STIC

• "2STiC's goal is to develop and evaluate mechanisms for increasing the security, stability and transparency of internet communications, for instance by experimenting with and contributing to emerging internet architectures, such as SCION, RINA, and NDN, as well as the existing (IP-based) Internet."

All partners in 2STiC: UvA, UT, SIDN, NLnet Labs, SURF


UPIN AND RESPONSIBLE INTERNET

• Focus

 Focus on communication transparency, accountability, and controllability

 Overlap with infrastructure and operations T-A-C

 Out of scope: "external" measurements (NIP)

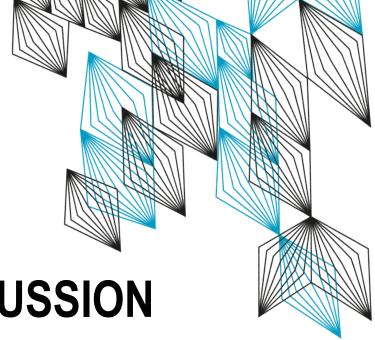
CURRENT STATUS

2400XXX\\\\/

Abstract submitted to ICT.Open

Working on a joint blog: motivation, scenarios, RQs, approach

Initial website: https://mns-research.nl/upin/


Getting hands-on experience (VNF test network @ UvA, P4)

Contact details:

Rodrigo Bazo: r.bazo@utwente.nl Leonardo Boldrini: l.boldrini@uva.nl Paola Grosso: p.grosso@uva.nl Aiko Pras: a.pras@utwente.nl

Cristian Hesselman: c.e.w.hesselman@utwente.nl (coordinator)

